Update on the Management of Chronic Stable Angina

HKCC ASM 2019 - 4th July, 2020

Dr. Cheuk-Man YU

MBChB, MRCP, FHKCP, FHKAM, FRACP, MD,
FRCP(Edin/London), FACC
Director of Heart Centre
Hong Kong Baptist Hospital
Honorary Clinical Professor
The Chinese University of Hong Kong

Disclaimer and Declaration of Competing Interests

None

W

The continuing burden of stable angina: Insight from ADVANCE Registry

- 2,039 stable angina patients (73% male, age 68)
- 419 cardiologists in 2 years
- 66% prior re-vascularization
- Stable angina recurred in 59%

Despite:

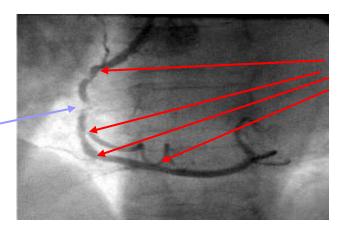
- Beta blockers 78%
- □ CCB 40%
- □ Long acting nitrates 53%
- □ Ivabradine 11%
- □ Trimetazidine 7%,
- 50% of 2,024 remained symptomatic and -30% QoL

A paradigm that suggests why randomized trials have not demonstrated a survival benefit for revascularization in SIHD

Stable IHD

ACS

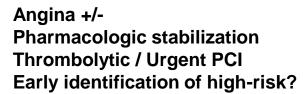
Severe Obstruction (angina, no rupture) vs Moderate Obstruction (no angina, likely to rupture)


Severe fibrotic plaque

- Severe obstruction
- No /minimal lipid
- Fibrosis, Ca²⁺

Exertional angina
• (+) ETT

Revascularization Anti-anginal Rx


Vulnerable plaque

- Moderate (to severe) obstruction
- Eccentric plaque
- Lipid pool
- Thin cap

Plaque rupture

- Acute MI
- Unstable angina
- Sudden death

International Study Of Comparative Health Effectiveness With Medical And Invasive Approaches (ISCHEMIA)

ISCHEMIA – Study Flow

Enrolled (8518)

Screen Failure (3339)

Major Reasons:

- Insufficient ischemia (N = 1350)
- No obstructive CAD (N = 1218)
- Unprotected LMD (N =434)

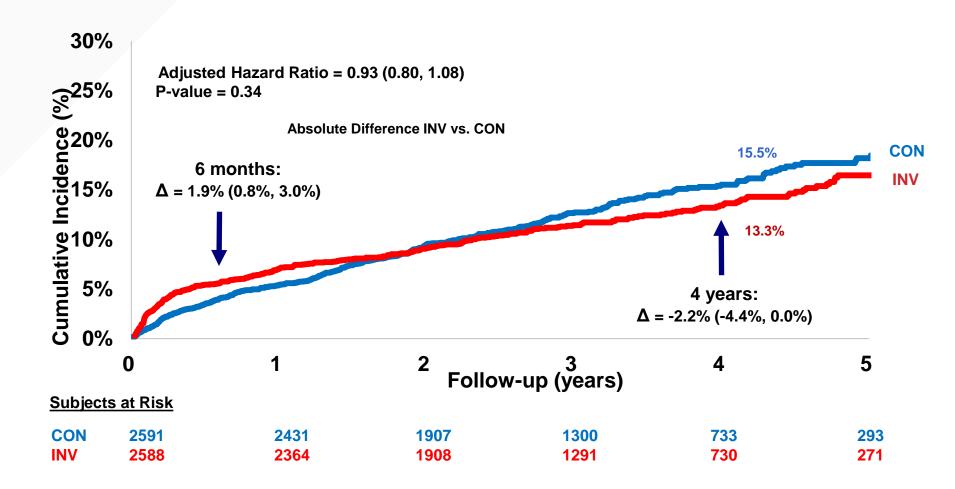
Randomized (5179)

Study CCTA in 73% of randomized participants

Randomized to INV (2588)

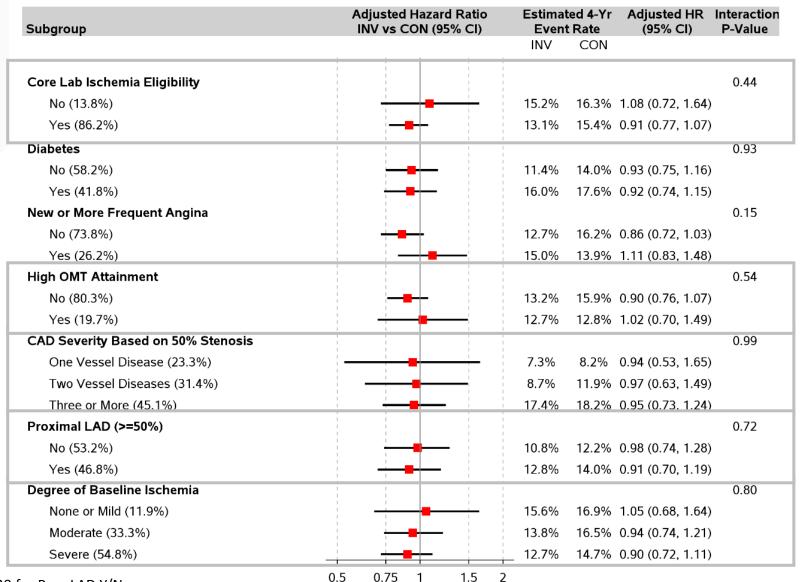
Median follow-up for survivors 3.3 years (IQR 2.2 to 4.3 years)

Proportion of follow-up completed: 99.4%


Randomized to CON (2591)

Median follow-up for survivors 3.3 years (IQR 2.2 to 4.4 years)

Proportion of follow-up completed: 99.7%


Primary Outcome: CV Death, MI, hospitalization for UA, HF or resuscitated cardiac arrest

Primary endpoint: Pre-specified Important Subgroups: There was no heterogeneity of treatment effect

N=3739 for Prox LAD Y/N N=2982 for # diseased vessels

<< Favors INV Favors CON>>

Conclusions from ISCHEMIA trial

- ISCHEMIA is the largest trial of an invasive vs conservative strategy for patients with SIHD
- Overall, an initial INV strategy as compared with an initial CON strategy did not demonstrate a reduced risk over median 3.3 years for
 - □ Primary endpoint CV death, MI, hospitalization for UA, HF, RCA
 - Major Secondary endpoint CV death or MI
- The probability of at least a 10% benefit of INV on all-cause mortality was <10%, based on pre-specified Bayesian analysis

ESC GUIDELINES

2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes

The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC)

Authors/Task Force Members: Juhani Knuuti* (Finland) (Chairperson), William Wijns* (Ireland) (Chairperson), Antti Saraste (Finland), Davide Capodanno (Italy), Emanuele Barbato (Italy), Christian Funck-Brentano (France), Eva Prescott (Denmark), Robert F. Storey (United Kingdom), Christi Deaton (United Kingdom), Thomas Cuisset (France), Stefan Agewall (Norway), Kenneth Dickstein (Norway), Thor Edvardsen (Norway), Javier Escaned (Spain), Bernard J. Gersh (United States of America), Pavel Svitil (Czech Republic), Martine Gilard (France), David Hasdai (Israel), Robert Hatala (Slovak Republic), Felix Mahfoud (Germany), Josep Masip (Spain), Claudio Muneretto (Italy), Marco Valgimigli (Switzerland), Stephan Achenbach (Germany), Jeroen J. Bax (Netherlands)

What is new in the ESC 2019 Guidelines? New/revised concepts

- The Guidelines have been revised to focus on CCS instead of stable CAD.
 (CCS= Chronic Coronary Syndromes)
- This change emphasizes the fact that the clinical presentations of CAD can be categorized as either ACS or CCS. CAD is a dynamic process of atherosclerotic plaque accumulation and functional alterations of coronary circulation that can be modified by lifestyle, pharmacological therapies, and revascularization, which result in disease stabilization or regression.
- CAD is chronic, most often progressive, and hence serious, even in clinically apparently silent periods.
- In the current Guidelines on CCS, six clinical scenarios most frequently encountered in patients are identified.

SIX most frequently encountered CCS scenarios

The Guidelines have been revised to focus on CCS instead of stable CAD.

This change emphasizes the fact that the clinical presentations of CAD can be categorized as either ACS or CCS. CCS are defined by the different evolutionary phases of CAD, excluding situations in which an acute coronary artery thrombosis dominates the clinical presentation.

The most frequently encountered clinic scenarios in patients with suspected or established CCS.

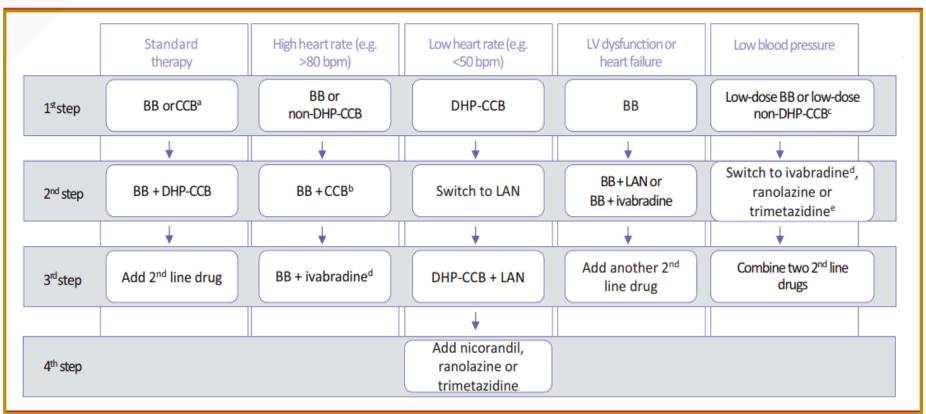
Patients with
suspected CAD
and 'stable'
anginal
symptoms, and/or
dyspnoea

Patients with new onset of heart failure (HF) or left ventricular (LV) dysfunction and suspected CAD

Asymptomatic subjects in whom CAD is detected at screening

Asymptomatic and symptomatic patients with stabilized symptoms <1 year after an ACS, or patients with recent revascularization

Asymptomatic and symptomatic patients >1 year after initial diagnosis or revascularization


Patients with angina and suspected vasospastic or microvascular disease

All of these scenarios are classified as a CCS but involve different risks for future cardiovascular events and the risk may change over time

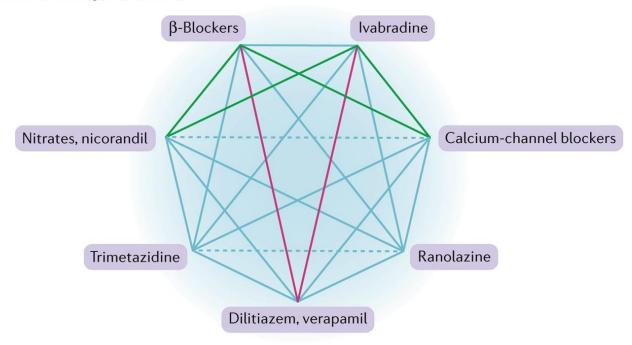
©ESC 2019

Suggested stepwise strategy for long term anti-ischaemic drug therapy

Suggested stepwise strategy for long term anti-ischaemic drug therapy in patients with chronic coronary syndromes and specific baseline characteristics. The proposed stepwise approach must be adapted to each patient's characteristics and preferences. Given the limited evidence on various combinations of drugs in different clinical conditions, the proposed options are only indicative of potential combinations and do not represent formal recommendations. BB = beta-blocker; bpm = beats per minute; CCB = [any class of] calcium channel blocker; DHP-CCB = dihydropyridine calcium channel blocker; HF = heart failure; LAN = long-acting nitrate; LV = left ventricular; non-DHP-CCB = non-dihydropyridine calcium channel blocker. a Combination of a BB with a DHP-CCB should be considered as first step; combination of a BB and non-DHP-CCB should initially use low doses of each drug under close monitoring of tolerance, particularly heart rate and blood pressure; c Low-dose BB or low-dose non-DHP-CCB should be used under close monitoring of tolerance, particularly heart rate and blood pressure; d Ivabradine should not be combined with non-DHP-CCB; e Consider adding the drug chosen at step 2 to the drug tested at step 1 if blood pressure remains unchanged

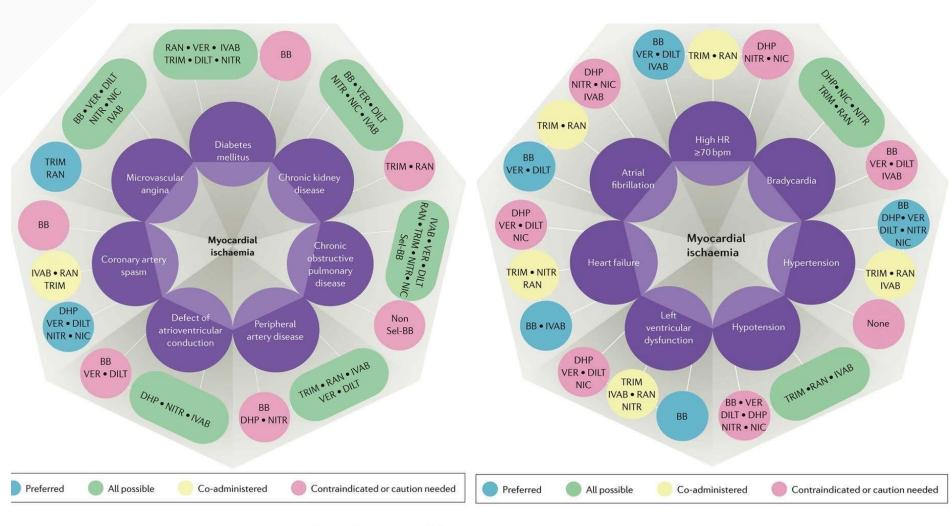
Traditional antianginals

- Blood pressure limitations
- Pulse rate limitations
- Effectiveness limited
- Side effects headaches with nitrates,
 fatigue/erectile dysfunction with beta-blockers



A 'diamond' approach to personalized treatment of angina

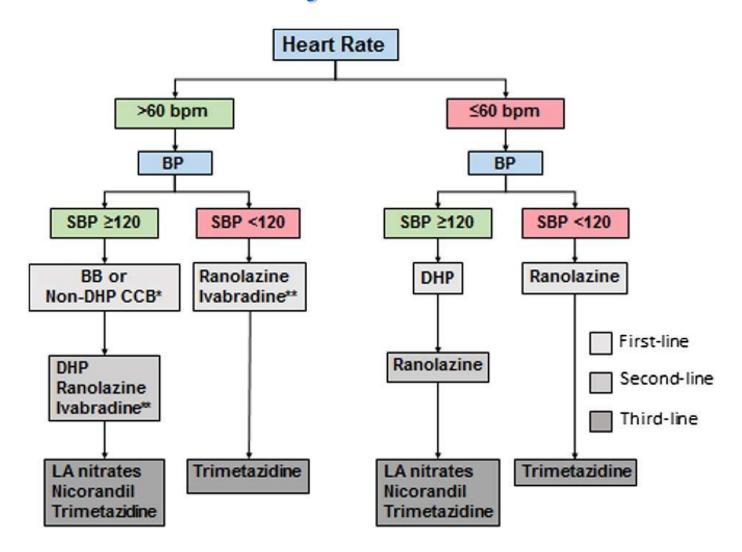
Roberto Ferrari^{1,2}, Paolo G. Camici³, Filippo Crea⁴, Nicolas Danchin⁵, Kim Fox⁶, Aldo P. Maggioni⁷, Athanasios J. Manolis⁸, Mario Marzilli^{9,10}, Giuseppe M. C. Rosano^{11,12} and José L. Lopez-Sendon¹³



Nature Reviews | Cardiology

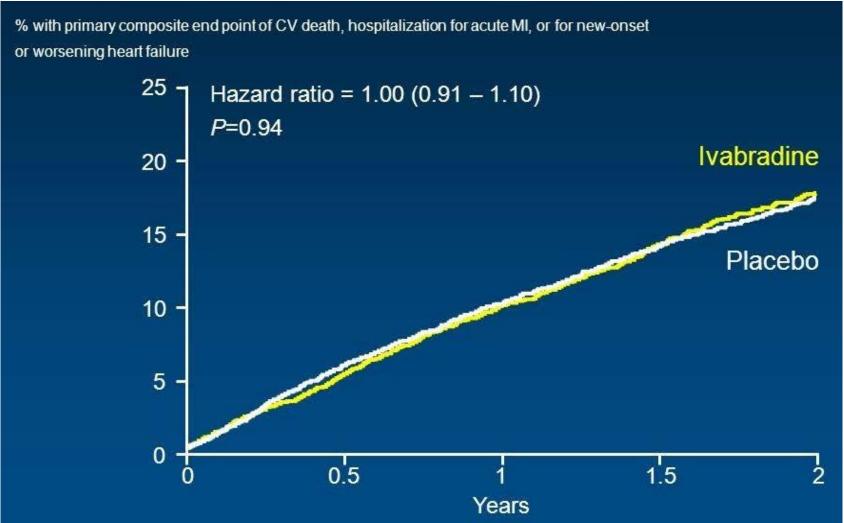
Possible combinations of different classes of antianginal drugs. The schematic shows useful combinations (green lines), combinations that are not recommended (red lines), possible combinations (blue solid lines), and drugs with similar actions (blue dashed lines).

Possible combinations of classes of antianginal drugs according to different comorbidities

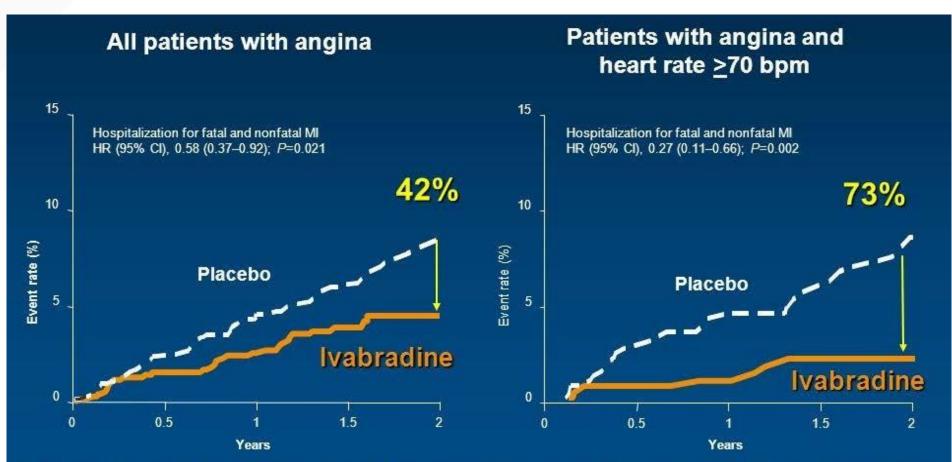

Nature Reviews | Cardiology

Nature Reviews | Cardiology

Choice of Antianginal Agent According to Haemodynamic Criteria

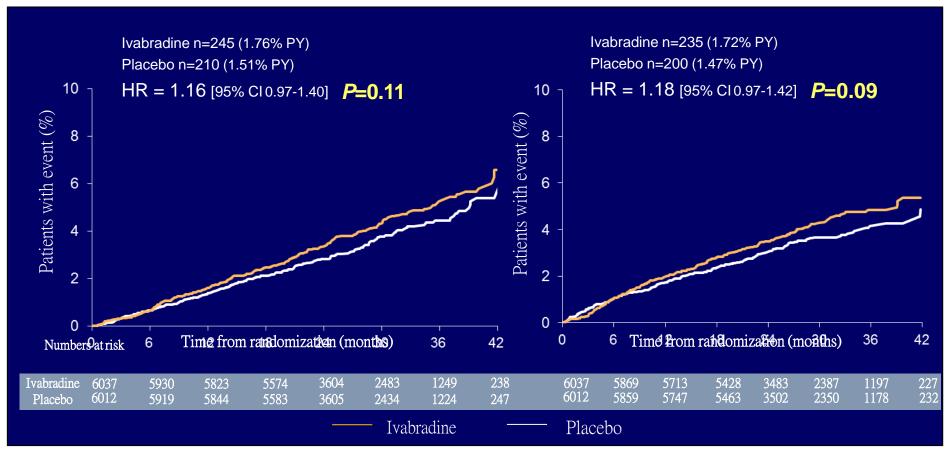


Ivabradine



BEAUTIFUL: Ivabradine reduces Myocardial infarction in patients with Angina

BEAUTIFUL: Effect of Ivabradine on Primary Endpoint (Overall population)


Fox K, Ford I, et al; BEAUTIFUL Investigators. Effect of ivabradine on cardiovascular outcomes in patients with stable coronary artery diseaseand left-ventricular systolic dysfunction with limiting angina: a subgroup analysis of the randomized, controlled BEAUTIFUL trial. Eur heart Jour On line.

SIGNIfY: Components of Primary composite endpoint (Angina population, CCS class ≥II, N=12049)

Cardiovascular death

Non-fatal myocardial infarction

The Risk of AF with Ivabradine Treatment: A Metaanalysis of more than 40,000 Patients

lvabradine Control		trol		Risk Ratio	Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rand	om, 95% CI
beautiful	286	5477	264	5430	30.5%	1.07 [0.91, 1.26]	_	0-
EMA-OOSS	26	2811	8	1125	2.9%	1.30 [0.59, 2.86]	(i)	
shift	306	3232	251	3260	31.0%	1.23 [1.05, 1.44]		
signify	508	9550	362	9552	35.6%	1.40 [1.23, 1.60]		
Total (95% CI)		21070		19367	100.0%	1.24 [1.08, 1.42]		•
Total events	1126		885					
Heterogeneity: Tau2 =	0.01; Ch	$i^2 = 6.3$	5, df = 3	(P = 0.	10); I2 = 5	- 53%	015 017	1-1
Test for overall effect:					37/50		Favours [ivabradine]	Favours [control]

3)	Ivabradine		Cont	rol		Risk Ratio	Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rand	om, 95% CI		
beautiful	286	5477	264	5430	31.7%	1.07 [0.91, 1.26]		-		
EMA-OOSS	26	2811	8	1125	0.0%	1.30 [0.59, 2.86]				
shift	306	3232	251	3260	32.2%	1.23 [1.05, 1.44]				
signify	508	9550	362	9552	36.1%	1.40 [1.23, 1.60]				
Total (95% CI)		18259		18242	100.0%	1.24 [1.06, 1.44]		•		
Total events	1100		877					10. 91		
Heterogeneity: Tau2 =	0.01; Ch	$i^2 = 6.3$	4. df = 2	(P = 0.0)	$(04); 1^2 = 6$	58% —	95 97	1-1		
Test for overall effect	Z = 2.67	(P = 0.	008)				0.5 0.7 Favours [ivabradine]	Favours [control]		

) Ivabradi		radine Control				Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rand	om, 95% CI	
beautiful	286	5477	264	5430	49.2%	1.07 [0.91, 1.26]	_		
EMA-OOSS	26	2811	8	1125	0.0%	1.30 [0.59, 2.86]		71.74	
shift	306	3232	251	3260	50.8%	1.23 [1.05, 1.44]			
signify	508	9550	362	9552	0.0%	1.40 [1.23, 1.60]			
Total (95% CI)		8709		8690	100.0%	1.15 [1.01, 1.31]	3	•	
Total events	592		515					227	
Heterogeneity: Tau2 =	0.00; C	$hi^2 = 1$.	35, df =	1 (P =	0.24); 12	= 26% -	0,5 0,7	1- 1	
Test for overall effect							0.5 0.7 [Favours [ivabradine]	Favours [control]	

Trimetazidine

□=PL; **■=TMZ**.

TRIMPOL II trial – TMZ + Metoprolol

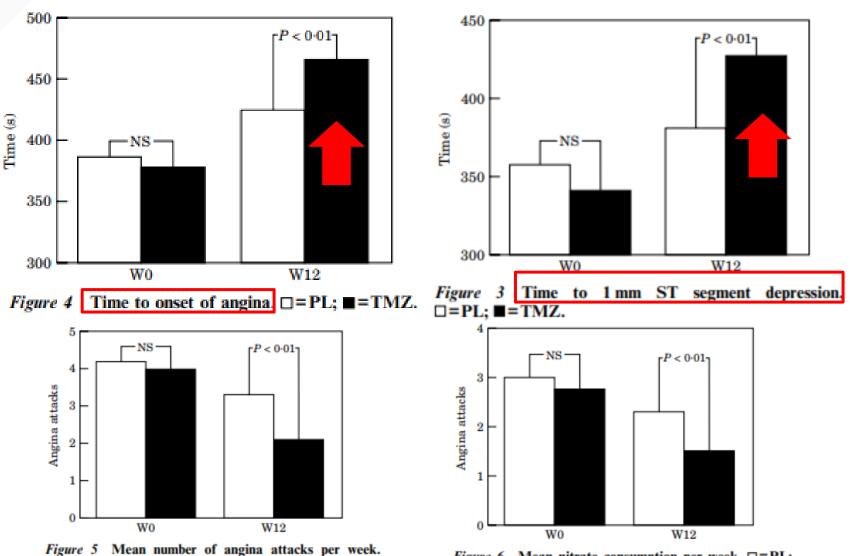
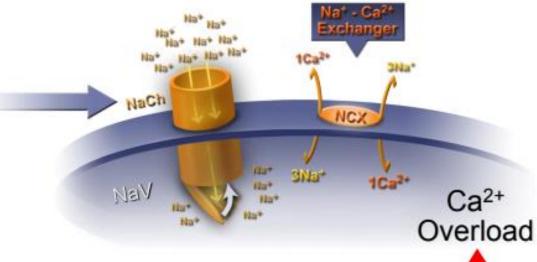


Figure 6 Mean nitrate consumption per week. □=PL; ■=TMZ.

Ranolazine



Mechanism of Action of Ranolazine

Diseases/Conditions

- 1. Acquired
- Hypoxia/ROS
- · Ischaemia
- Heart failure
- Atrial fibrillation
- 2. Congenital (inherited)
- Cardiac: SCN5A (LQT3)

Defective Na Channel gating leads to Ca⁺⁺overload

Na Ch inactivation failure

↓
Enhanced late I_{Na}

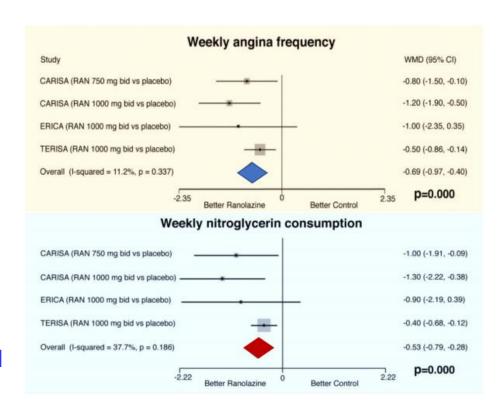
Ranolazine is a piperazine derivative that seems to exert its anti-ischemic effects through antagonism of the late phase of the inward sodium current (late I_{Na}) that is increased in myocardial ischemia and contributes to detrimental cellular sodium and calcium overload. Ranolazine exerts anti-ischemic actions without a clinically significant effect on heart rate or blood pressure

Drugs for angina: pharmacology, symptom relief, outcomes benefits, and guideline recommendations

Table 1 | Drugs for angina: pharmacology, symptom relief, outcomes benefits, and guideline recommendations

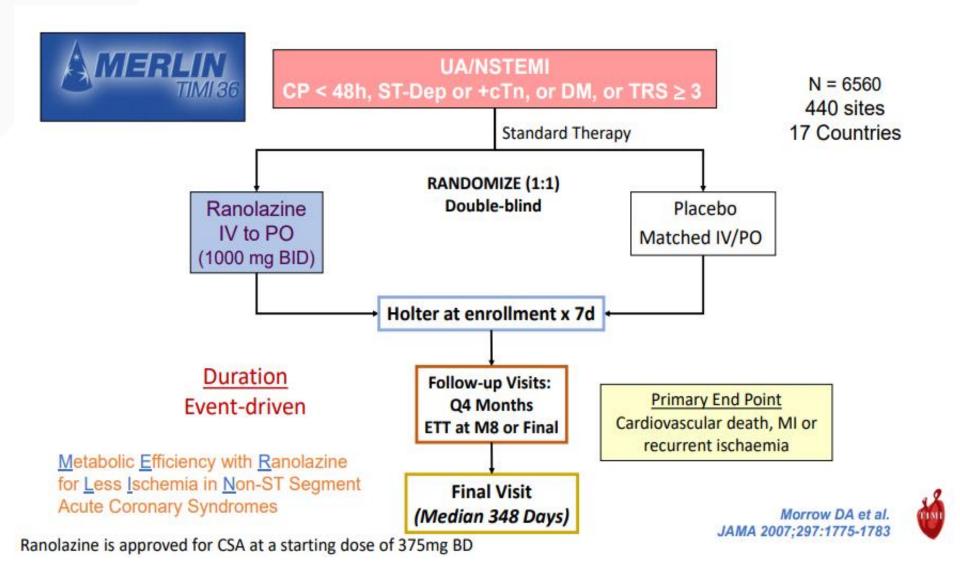
Antianginal drug	HR	SBP	DBP	PVR	CC	CV	Symptom relief	Outcomes benefit	ESC*	ACC/AHA*
Nitrates										
Short-acting	1-	11	+	1 -	-	$\uparrow\uparrow\uparrow$	Yes	No	IB	IB
Long-acting	1-	1	\	↓-	=	1 1	Yes	No	IIB	IB
β-Blockers										
Noncardioselective	111	11	+ +	↑-	11	-	Yes	No	IA	IB
Cardioselective (preserved EF)	111	11	11	-	11	-	Yes	No	IA	IB
Cardioselective (reduced EF)	111	11	+ +	~	11	_	Yes	Yes	IB	IB
With vasodilatation (preserved EF)	11	111	111	1 1	1	-	Yes	No	IB	IB
With vasodilatation (reduced EF)	11	111	111	1 1	1	_	Yes	Yes	IA	IA
Calcium-channel blockers										
Dihydropyridines	1-	111	111	111	1-	$\uparrow\uparrow\uparrow$	Yes	No	IA	IB
Nondihydropyridines	11	11	1 1	1 1	+	1 1	Yes	No	IA	IIB
Other (considered second-choice t	reatmer	t in gui	delines)							
Ivabradine	1 1	↓-	↓-	-	-	-	Yes	No	II _a B	NA
Nicorandil	1	1 1	1 1	↓-	_	$\uparrow\uparrow\uparrow$	Yes	Yes	II _a B	NA
Ranolazine	_	-	-	-	_	_	Yes	No	II _a B	IIA
Trimetazidine	_	20		22	9	_	Yes	No	II _ь B	NA

^{*}Guideline classification of benefit: class I = benefit >> risk; class $II_a = benefit >> risk$; class $II_b = benefit > risk$. Level of evidence: A = one or two large, randomized trials; B = one randomized trial or small meta-analysis. CC, cardiac contractility; CV, coronary vasodilatation; DBP, diastolic blood pressure; EF, ejection fraction; HR, heart rate; NA, not available; PVR, peripheral vascular resistance; SBP, systolic blood pressure.

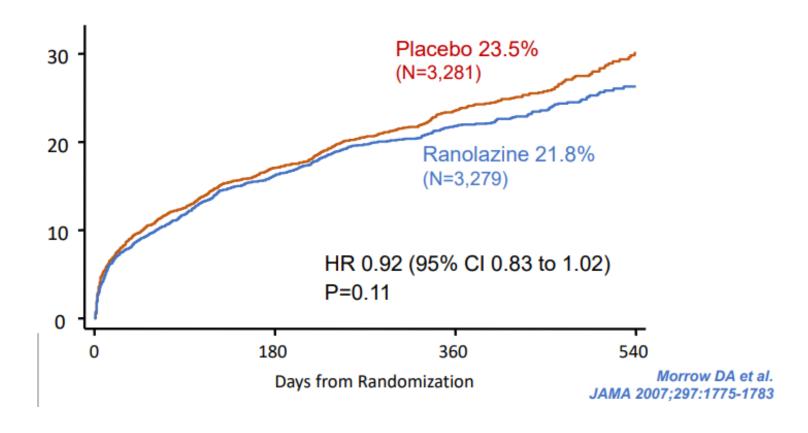

Ranolazine Meta-analysis Chronic Stable Angina

Six trials enrolling 9,223 patients

In symptomatic patients with chronic CAD.

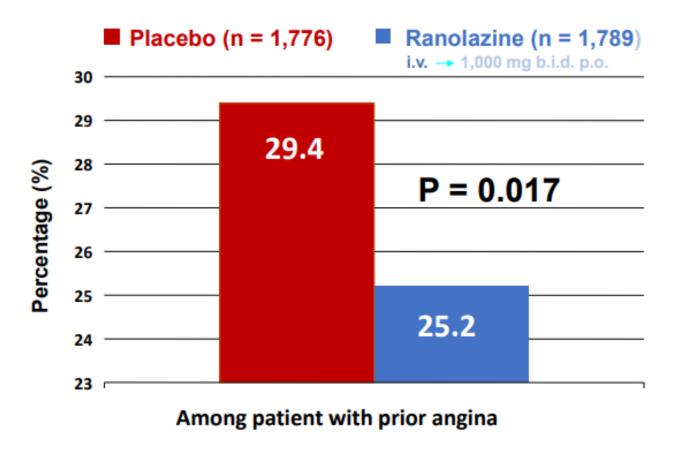

Ranolazine, added to conventional therapy, effectively:

- 1) reduces angina frequency and sublingual nitroglycerin consumption
- 2) while prolonging exercise duration as well as time to onset of ischemia and to onset of angina
- 3) with no substantial effects on <u>blood</u> pressure and heart rate



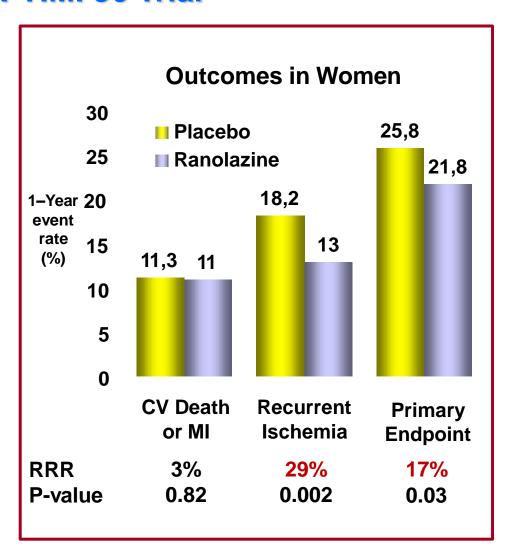
Primary Endpoint

CV Death, MI, or Recurrent Ischaemia (% at 12M)



MERLIN: Chronic Angina Patients

Primary Endpoint: CV death, MI or Recurrent Ischaemia



Ranolazine is Particularly Effective in Women: MERLIN-TIMI 36 Trial

Women (n = 2291) vs men (n = 4269)

- Older, with higher rates of
 - DM, HT
 - HF
 - Prior angina
 - ST↓
 - ↑BNP
- · However, lower rates of
 - Stenosis >50%
 - ↑Troponin
- Greater burden of ischemia on Holter monitoring and Seattle Angina Questionnaire

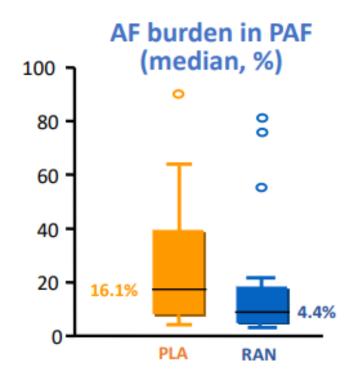
P < 0.001 for all comparisons

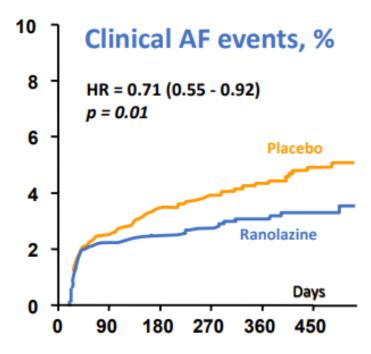
MERLIN-TIMI 36: Significantly lower incidence of arrhythmias

Arrhythmias	Ranolazine (n) %	Placebo (n) %	<i>p</i> -value
New-onset atrial fibrillation	55 (1.7)	75 (2.4)	0.08
Supraventricular tachycardia*	1,413 (44.7)	1,752 (55)	<0.001
Pauses ≥3 sec	97 (3.1)	136 (4.3)	0.01
VT ≥8 beats	166 (5.3)	265 (8.3)	<0.001

Continuous ECG (Holter) recording was performed for the first 7 days after randomisation

* ≥120 bpm lasting at least 4 beats


Randomised, double-blind, placebo-controlled study. Patients (n= 6,560) with non-ST elevation-acute coronary syndromes on standard therapy were randomised to ranolazine (iv followed by oral 1,000 mg twice daily, n=3,279) or placebo (n=3,281) with a median follow-up of 348 days.(1). Continuous ECG (Holter) recording was performed for the first 7 days after randomisation. Analysis on 6,351 patients (97%) who had evaluable continuous ECG recordings.(2)

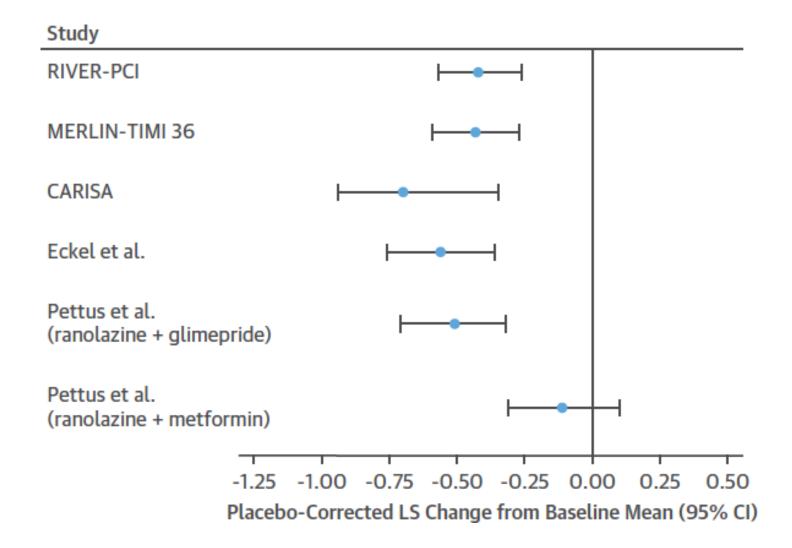

Ranolazine in ACS: MERLIN-TIMI-36

- N = 6560 with NSTEMI ACS
- 6,351 (97%) with 7-day LR
- Follow-up: 1 year
- Clinical AF during F-Up was based on AE reporting

Patients treated with ranolazine tended to have fewer AF episodes

during the first 7 days vs placebo: 55 (1.7%) vs 75 (2.4%), p = 0.08

Microvascular Angina


Possible Role of Ranolazine

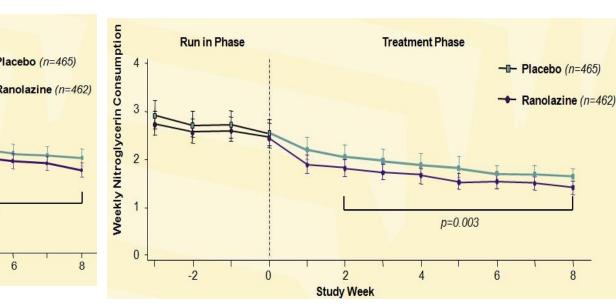
MVA: Pathogenetic Factors	Action of Ranolazine
Conceivably an ischemic disease	Anti-ischaemic drug
Microvascular dysfunction	Reduces mechanical dysfunction
Endothelial dysfunction	Anti-inflammatory or antioxidant effects. May improve endothelial function
Glucose intolerance	Improves glyco-metabolic control

Effect of Ranolazine on HbA1C in CSA Patients with DM in Published Clinical Trials

TERISA: Type 2 Diabetes Evaluation of Ranolazine in Subjects With Chronic Stable Angina

Primary endpoint: Weekly Angina Frequency

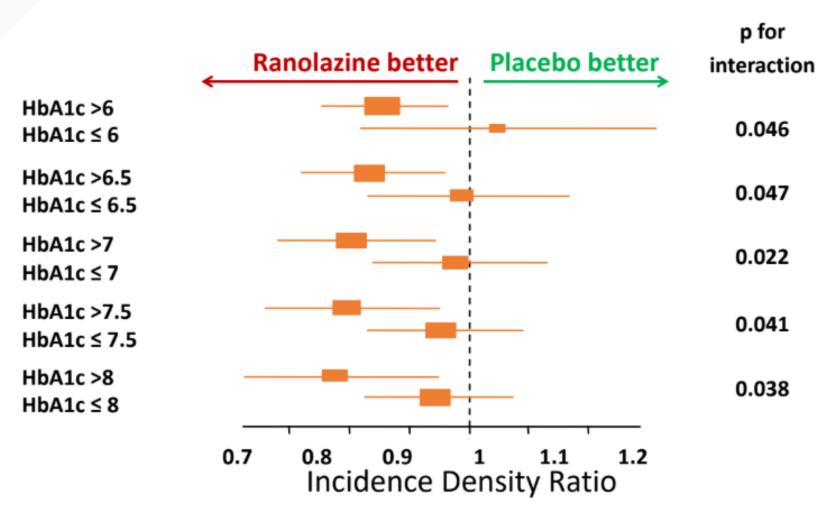
Weekly Angina Frequency


-2

Study Week

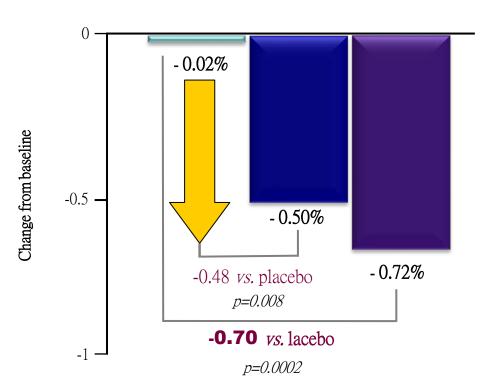
p=0.008

Secondary endpoint : Weekly Nitroglycerin Consumption



Randomised, double-blind, placebo-controlled study. Patients (n= 927) with type 2 diabetes, coronary artery disease, and chronic stable angina already on up to 2 antianginal agents were randomised to ranolazine 1,000 mg bid (n=462) or placebo (n=465) for 8 weeks

Exploratory Analysis – HbA1c


(Relative difference in the incidence rates of weekly angina frequency)

Effect of Ranolazine on HbA1c in CSA patients with diabetes

Change from baseline to week 12 in HbA_{1c}

- Placebo + background therapy* for 12 weeks (n=37)
- Ranolazine 750 mg bid + background therapy* for 12 weeks (n=47)
- Ranolazine 1,000 mg bid + background therapy* for 12 weeks (n=47)

Double-blind, 3-group parallel trial. Patients (n=823) with symptomatic chronic angina were randomly assigned to receive twice-daily placebo (n=269) or 750 mg (n=279) or 1,000 mg (n=275) of sustained- release ranolazine for 12 weeks. (1) Analysis of patients with (n=189, taking insulin or not taking insulin) and without diabetes (n=634).(2)

Background therapy: atenolol 50 mg od or amlodipine 5 mg od or diltiazem 180 mg od. At baseline mean HbA1c in patients treated with placebo or ranolazine 750 mg bid or ranolazine 1,000 mg bid were 7.5%, 7.7% and 7.9%, respectively.

\$

Roles of Ranolazine

- As an add-on medication for sub-optimal angina control with traditional anti-angina drugs
 - Ranolazine provides effective angina relief when add-on with BBs/CCBs
- As add-on in bradycardia and/or hypotensive patients
 - No substantial effects on blood pressure and heart rate
- In CSA patients with diabetics
 - Ranolazine reduces the angina frequency and severity and may improve HbA1c in CSA patients with DM

Extent of CAD (anatomical and/or functional)						
For	Left main disease with stenosis >50%. ^c ^{68–71}					
prognosis	Proximal LAD stenosis >50%. ^c 62,68,70,72	- 1	A			
	Two- or three-vessel disease with stenosis >50% with impaired LV function (LVEF ≤35%). c 61,62,68,70,73-83	1	A			
	Large area of ischaemia detected by functional testing (>10% LV) or abnormal invasive FFR. ^d ^{24,59,84–90}	1	В			
	Single remaining patent coronary artery with stenosis >50%.	1	С			
For symptoms	Haemodynamically significant coronary stenosis ^c in the presence of limiting angina or angina equivalent, with insufficient response to optimized medical therapy. ^e ^{24,63,91–97}	1	А			

CAD = coronary artery disease; FFR = fractional flow reserve; iwFR = instantaneous wave-free ratio; LAD = left anterior descending coronary artery; LV = left ventricular; LVEF = left ventricular ejection fraction.

^aClass of recommendation.

^bLevel of evidence.

^cWith documented ischaemia or a haemodynamically relevant lesion defined by FFR ≤0.80 or iwFR ≤0.89 (see section 3.2.1.1), or >90% stenosis in a major coronary vessel.

^dBased on FFR <0.75 indicating a prognostically relevant lesion (see section 3.2.1.1).

^eIn consideration of patient compliance and wishes in relation to the intensity of anti-anginal therapy.

Recommendation for the type of revascularization in patients with stable CAD eligible for both PCI or CABG

Recommendations according to extent of CAD	CA	BG	PC	CI
	Class ^a	Level ^b	Class ^a	Levelb
One-vessel CAD				
Without proximal LAD stenosis.	IIb	С	1	С
With proximal LAD stenosis. ^{68,101,139–144}	1	A	- 1	A
Two-vessel CAD				
Without proximal LAD stenosis.	IIb	С	- 1	С
With proximal LAD stenosis. ^{68,70,73}	1	В	- 1	С
Left main CAD				
Left main disease with low SYNTAX score (0 - 22). 69,121,122,124,145–148	1	A	1	A
Left main disease with intermediate SYNTAX score (23 - 32). 69,121,122,124,145–148	1	A	lla	A
Left main disease with high SYNTAX score (≥33).c 69,121,122,124,146–148	1	A	101	В
Three-vessel CAD without diabetes mellitus				
Three-vessel disease with low SYNTAX score (0 - 22). 102,105,121,123,124,135,149	1	A	- 1	A
Three-vessel disease with intermediate or high SYNTAX score (>22).c 102,105,121,123,124,135,149	1	A	111	A
Three-vessel CAD with diabetes mellitus				
Three-vessel disease with low SYNTAX score 0–22. 102,105,121,123,124,135,150–157	1	Α	IIb	A
Three-vessel disease with intermediate or high SYNTAX score (>22).c 102,105,121,123,124,135,150-157	1	Α	Ш	Α

Caveats: Choices of PCI Vs CABG

FAVOURS PCI

Clinical characteristics

Presence of severe co-morbidity (not adequately reflected by scores)

Advanced age/frailty/reduced life expectancy

Restricted mobility and conditions that affect the rehabilitation process

Anatomical and technical aspects

MVD with SYNTAX score 0-22

Anatomy likely resulting in incomplete revascularization with CABG due to poor quality or missing conduits

Severe chest deformation or scoliosis

Seguelae of chest radiation

Porcelain aorta^a

FAVOURS CABG

Clinical characteristics

Diabetes

Reduced LV function (EF ≤35%)

Contraindication to DAPT

Recurrent diffuse in-stent restenosis

Anatomical and technical aspects

MVD with SYNTAX score ≥23

Anatomy likely resulting in incomplete revascularization with PCI

Severely calcified coronary artery lesions limiting lesion expansion

Need for concomitant interventions

Ascending aortic pathology with indication for surgery Concomitant cardiac surgery

Conclusions

- Medical therapy is the foundation of treatment for SCAD/CCS
- First-line medications are less evidence-based than the new 2nd line drugs
- Current guidelines recommend single drug & combination therapy with consideration of comorbidities and haemodynamic status
- Newer 2nd line anti-anginal drugs improve symptoms but without negative haemodynamic impact
- The selection of revascularization therapy should consider patient's clinical characteristics, coronary anatomy and procedure risks

